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Abstract—Similarity rank lists provide a method for learning
generalization of classifiers from examples. Here, we apply it to
invariant object recognition and demonstrate that it performs
better than other approaches on view and illumination invariant
recognition. Recognition from a single view reaches 87% success
rate. To study its real world capabilities we introduce subsqare
rank matching that works on image patches and RUBJECTS100,
a database of 100 objects under varying pose and illumination,
and a set of natural scenes containing these objects.

I. INTRODUCTION

For any classification task in machine learning, the general-
ization of the learned classifier is the most important capability.

Ideally, it should cover the whole natural class while rejecting

everything outside of it. However, usually little is known about

the shape of the true class in a high-dimensional space.

In the case of visual object recognition, deep convolutional

neural networks have recently advanced to defining the state

of the art [8]. However, with the help of backpropagation it is

possible to construct images that are visually indistinguishable

from an image of a certain object but classified as another [17],

[5]. Such adversarial examples show that even large networks

fail to completely model the shape of the object class. Also,

with the use of evolutionary algorithms, it is possible to

construct images that are classified with high confidence but

show no visual similarity to the recognized object [10].

Therefore, it might be fruitful to attempt to actively control

the generalization of a classifier by learning how different

image instances of the same object are transformed into each

other and applying this learned transformation to new objects.

In [13] we have developed similarity rank list comparison
as such a method, which takes a model set of faces of some

persons in different situations and applies the learned trans-

formation to new persons. In combination with elastic bunch

graph matching [19] this was able to outperform all previous

methods in the literature on the CAS-PEAL database [3] in

recognition under varying viewpoint and illumination.

Similarity rank list comparison also provides a natural way

of integrating different cues into a single decision by simple

averaging of the rank list similarities provided by each cue.

In this study, we apply the technique to the recognition of

objects under varying viewing angles and illuminations. We

introduce an extension that processes image patches instead

of whole images. This is finally tested on images containing

the objects in cluttered backgrounds.

Fig. 1. A model database (center) captures the variations that objects undergo
in different situations. A gallery (right) contains all object in a subset of
situations. Probe images as well as gallery images are coded as similarity
rank lists to the various model images. Recognition is on the basis of rank
list similarity

II. RECOGNITION BY SIMILARITY RANK LISTS

Let Sim
c (I1, I2) be any measure of similarity between two

images I1 and I2, the index c enumerating different image

cues.

For the recognition of an arbitrary object a large gallery
database is created, which contains known objects in certain

situations, in the extreme case only one image per object.

Object variation is described by a model database containing

some objects in all possible situations together with the

information which model images belong to the same object.

In most of [13], it was assumed that the situations be

estimated beforehand by some other algorithm. The paper also

briefly described a version, in which situations were unlabeled,

that is the only information in the model database was which

set of images belongs to the same person. This leads to much

longer rank lists and consequently higher computational de-

mands, but avoids the arduous task of estimating the situation

beforehand.

In this work we concentrate on the latter. It is also ap-

propriate for invariant object recognition, because there is

no natural definition of what the same pose would be for

different objects. Model images are denoted by Mv
m with m

enumerating identity and v enumerating the various instances.

Similarly, the gallery consists of gallery images Gv
g .

Object identity is coded by a similarity rank list to all

models, for both probe and gallery images. The rank list for

any image T is created as follows. First, all similarities Sim to

all model images Mv
m are calculated. A rank list r is created,
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which contains the rank of similarity for each model index m,

so that for each pair of model images Mv
m,Mv′

m′ the following

holds (rc(T,m) ∈ {1, . . . NM}):
rc(T,m) < rc(T,m

′) ⇒ Sim
c (T,Mv

m) ≥ Sim
c (T,Mv′

m′) .
(1)

The most similar model candidate would be rc(T, 1), the

follower-up rc(T, 2), etc. These lists now serve as a repre-

sentation of a test image T .

Each subject Gg in the gallery is assigned a rank list

representation γg,c by matching each of its landmarks to those

of the model subjects in the preferred situation:

γg,c(Gg,m) = rc(Gg,m) , m = 1 . . . NM . (2)

For recognition, an unknown probe image P is also repre-

sented as a similarity rank list πc for each cue:

πc(P,m) = rc(P,m) , m = 1 . . . NM . (3)

A. Rank list comparison

Having represented the gallery and probe images by rank

lists of equal length all that is required for invariant recognition

is a function Srank(π, γ) that measures the similarity of these

rank lists. Such a function should should take values between

0 and 1, be high when many model indices appear at the same

rank, and maximal for two identical rank lists. Cooccurrences

with high image similarities (i.e., with low values of r) should

be weighted more strongly than those with low ones. One

example for such a similarity is

Srank(r1, r2) =

∑NM

m=1 f(r1(m) + r2(m))∑NM

m=1 f(2m)
, (4)

where f is a monotonically decreasing. Here we are using

f(x) = (x+ 1)d with d ∈ [−2, 0), like in [11], [12]. Another

tested possibility for Srank is the rank-biased overlap function

(RBO) developed by [18]. The rank list similarity for a single

cue c is

Srank(π, γg,c) =
1

NM

NM∑
m=1

(π(m) + γg(m) + 1)d . (5)

This rank list similarity can be evaluated separately for each

cue, and the resulting similarities are averaged over all cues.

Srec(P,Gg) =
1

NC

C∑
c=1

Srank(πc, γg,c) . (6)

As usual, the recognized object is the one with the index g
that maximizes this similarity

grec = argmaxSrec(P,Gg) . (7)

B. Features and similarity functions

Color images are denoted as (IR(p), IG(p), IB(p)), grey

value images as Igraywith p running over all pixels. The

simplest similarity function comparison of images I, J is the

negative mean squared error (MSE):

Sim
MSE(I, J) = −

∑
p

∑
k∈{R,G,B}

(Ik(p)− Jk(p))
2 (8)

Bit code Code Cue
10000000 MSE Mean squared error
01000000 PCC Pearson correlation coefficient of grey levels
00100000 CHI Averaged color histogram intersection
00010000 HHI Hue color histogram intersection
00001000 LBP Local binary pattern histogram intersection
00000100 GLCM Gray level cooccurrence matrix features
00000010 SHI Saturation color histogram intersection
00000001 BHI Brightness color histogram intersection

TABLE I
THE IMAGE CUES USED IN THIS STUDY. CUE COMBINATIONS ARE CODED

BY A BIT STRING WITH ONES AT RESPECTIVE POSITIONS.

The second is the Pearson correlation coefficient on the

greyscale (PCC)

I =
∑
p

I(p), J =
∑
p

J(p)

Sim
PCC(I, J) =

∑
p(I(p)− I)(J(p)− J)√∑

p(I(p)− I)2
∑

p(J(p)− J)2
(9)

Next we are using various histograms, which are all compared

by histogram intersection:

SHistH1, H2 =

∑
i min(H1(i), H2(i))∑

i H2(i)
(10)

Applying this to normalized RGB histograms normalized by

the sum of R-, G- and B-channels [16], yields the CHI
similarity Sim

CHI as the average of the single channel histogram

intersections.

Histograms intersections in the HSB (Hue, saturation,

brightness) space are denoted by HHI, SHI, and BHI, re-

spectively with similarity functions Sim
HHI, S

im
SHI, and Sim

BHI .

Another useful grey-level image feature is Local Binary Pat-

terns (LBP) [15], which can be histogrammed and compared

by histogram intersection to yield Sim
LBP.

Finally, we are have used several features like difference

of contrast, energy, and homogeneity based on gray level
cooccurrence matrices (GLCM) to build the Sim

GLCM. As these

did not prove useful at all (fig. 2) we skip the details here.

III. PROCESSING OF SEGMENTED OBJECTS

To evaluate the recognition capabilities we used the ALOI

(Amsterdam Library of Object Images) [4]. It contains 4 image

sets of 1000 objects, only 3 of them are used in this study.

The first set consists of a variation of the viewing angle by

rotating the object in the plane at 5-degree resolution, resulting

in 72 images per object. The second set was taken under

variation of the illumination angle archived by either using

different combinations of light positions (l1–l8) or camera

positions (c1–c3), resulting in 21 images per object. The third

set consists of a variation of the illumination color temperature

from 2175K to 3075K, with 12 images per object.

For our tests we have cropped all images to the bounding

box of the object and rescaled the cropped images to 32 ×
32 pixel. We used the last 250 objects as model database. The

gallery consists of a single image at 0◦ viewing angle for each

of the remaining 750 objects. Probe images were drawn from

all these images.
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Fig. 2. Recognition rates on ALOI depending on rotation angle. Top: Single
similarity functions, Bottom: Selected combinations of similarity functions.
The overall recognition rate for c00011011 is 87.5%

The results are shown in fig. 2. Recognition rates are at

100% under 10◦, decline slowly until 90◦, then go back up

to 180◦, then the behavior is practically symmetric. It can

be seen that the HHI-cue performs best, while the GLCM-

cue is worthless. The second part of fig. 2 shows results for

combinations of four cues, all of which are better than the best

single cue.

Fig. 3 shows that illumination situations are handled very

well. Table III presents the orientation-invariant recognition

results for different sizes of gallery and model, respectively.

It can be concluded that moderate model sizes already lead to

good recognition.

Finally, we compare the recognition system with others

on the same database (table II). The gallery contains 25% of

all views for each object, as this is the setup that the other

authors used for testing. As we have used 250 images as model

database, we first restricted the gallery to 750 objects. Then we

changed the model database to the 100 objects in the COIL-

100 database [14] and used a gallery of 1000 objects. Although

this is a small model database, results are still higher than the

competitors’.

IV. PROCESSING OF CLUTTERED IMAGES

A. Subsquare-Rankings (SSR)

To increase the performance in unknown situations we

propose a new version of rank list matching using rankings

of subsquares of variable size. Here, both probe and gallery

images are divided into multiple equally sized squares, which

Fig. 3. Recognition rates on ALOI depending on illumination direction (top)
and illumination type (bottom). The cues for the color evaluation were HHI,
LBP, SHI, and BHI), for greyscale PCC, CHI, LBP and BHI.

Method view ill. dir. ill. col.

Proposed System: 750 objects

Color KS 99.95 98.23 99.91

Greyscale KS 99.95 98.78 100
Color US 99.85 99.75 99.69

Greyscale US 99.84 99.58 99.96

Color SSR-US 100 N/A N/A

Greyscale SSR-US 99.92 N/A N/A

Proposed System: 1000 Objects

Color KS 98.99 — —

Greyscale KS 95.03 — —

Other Methods: 1000 Objects

TCG [9] 98.06 98.73 N/A

HMAX [2] 80.76 83.13 99.04

SalBayes [2] 89.71 75.50 64.79

SIFT [2] 70.95 71.47 89.41

TABLE II
RECOGNITION RATES ON THE ALOI DATABASE WITH A 25% OF VIEWS IN

THE GALLERY. THE TESTS OF OUR SYSTEM INCLUDE KNOWN (KS) OR

UNKNOWN (US) SITUATION, COLOR OR GREYSCALE, AND RANK LIST

BUILDING WITH AND WITHOUT SUBSQUARE RANKING (SSR). IN THE

FIRST BLOCK, WE USE 250 ALOI OBJECTS AS MODEL. IN THE SECOND

BLOCK, THE MODEL IS REPLACED BY THE COIL-100 DATASET. THE

THIRD ONE SHOWS THE RECOGNITION RESULTS OF OTHER SYSTEMS.

are then compared only to equivalent counterparts of the model

image. Independent from each other, each subsquare votes

for an object, and the object with the highest vote count

becomes matched. This method has although been applied to

the segmented images (table II).

To address the challenges of cluttered images, this needs

to be accompanied by decision integration across different
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Model objects 50 100 150 200 250 300 350 400 450 500

Gallery objects

50 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

100 0.90 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

150 0.87 0.91 0.91 0.92 0.92 0.92 0.93 0.93 0.93 0.93

200 0.86 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.92 0.93

250 0.84 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.92

300 0.83 0.86 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.92

350 0.82 0.85 0.87 0.88 0.88 0.90 0.90 0.90 0.91 0.91

400 0.81 0.85 0.87 0.88 0.88 0.90 0.90 0.90 0.90 0.91

450 0.81 0.85 0.88 0.89 0.89 0.90 0.90 0.90 0.90 0.90

500 0.81 0.85 0.87 0.87 0.88 0.89 0.90 0.90 0.90 0.90

TABLE III
RECOGNITION RATES ON A SINGLE VIEW OVER VARYING ORIENTATION ON THE ALOI DATABASE DEPENDING ON THE NUMBER OF OBJECTS IN MODEL

AND GALLERY SETS, RESPECTIVELY.

Fig. 4. An overview of all objects in the RUBJECTS-100 database

scales. In a first step the input (natural) image is resized so

that the longest side of the image measures 100 pixel. Then

a multiscale sliding window exhaustive search is performed

(algorithm 2) and the resulting probabilities at each pixel

are saved for each scale (algorithm 1). At the end we have

one probability map per object and per scale, which can be

evaluated (algorithm 3) to estimate where the object may be

on the image. This consists of the following steps:

1) Selecting the points of interest From the probability

map the maximum value is determined and afterwards

all pixels with superthreshold probability selected as

points of interest for the current scale. The lowest scale

is ignored in this step since it yields many false positives.

2) Clustering the points of interest The POI are then clus-

tered using the Mean Shift Algorithm with a Gaussian

Kernel [1] with given radius.

3) Creating bounding boxes for each cluster For each

cluster a rectangle that envelops all points is calculated.

Very small rectangles with an area smaller then a fixed

threshold are discarded, since they are considered noise

artifacts.

4) Globally merging intersecting rectangles The newly

found rectangles are merged globally with all intersect-

ing or close by rectangles located in previous iterations

or scales. The results are the bounding box of the merged

rectangles.

Algorithm 1 Object finding

procedure FINDOBJECTS(PScaleMaps,Objs)
rectangles
for all obj ∈ Objs do
scale← 0
for all map ∈ PScaleMapsobj do
if scale > 0 then
map←MAXVALUES(map,0.00116)
clusters←GAUSSIANMEANSHIFT(map,3,3)
tmpRcts←BUILDRECTANGLES(clusters,0.96)
mergedRcts←MERGEINTERSECT(tmpRcts,rectangles)
rectangles←MERGENEIGHBOR(rectangles,mergedRcts)

end if
scale← scale+ 1

end for
end for
return MERGELOWESTSCALE(rectangles,PScaleMaps)

end procedure

5) Globally merging nearest neighbors Rectangles whose

minimal distance is below a fixed threshold are merged

analogy to the previous step. In other words, they are
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Fig. 5. Object recognition in a cluttered scene.
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Algorithm 2 Image preprocessing

procedure PROCESSIMAGE(IMG,ScaleList,NrOfSquares)
for all x ∈ IMGWIDTH do
for all y ∈ IMGHEIGHT do
for all scale ∈ ScaleList do
WinSize← scale/NrOfSquares
WinIMG← CROPIMAGE(IMG,x,y,WinSize,WinSize)
for sx ← 0; sx < NrOfSquares; sx ← sx + 1 do
for sy ← 0; sy < NrOfSquares; sy ← sy + 1 do
PROCESSWINDOW(WindowIMG,x,y,scale,sx,sy)

end for
end for

end for
end for

end for
end procedure

Algorithm 3 Window evaluation

procedure PROCESSWINDOW(WinIMG,x,y,scale,sx,sy)
PositionList← GETPOSITIONLIST()
FlipList← GETFLIPLIST()
RotationList← GETROTATIONLIST()
for all pos ∈ PositionList do

for all flip ∈ FlipList do
for all rot ∈ RotationList do
ModelList← GETMODELLIST(pos,flip,rot,scale,sx,sy)
RLCol← CREATERANKLISTCOL(ModelList,WinIMG)
GalRankLists← GETGALRANKLISTS(flip,rot,scale,sx,sy)
for all GalRLCol ∈ GalRankLists do
GID← GalRLColID
SYM← COMPARERANKLISTCOL(GalRLCol,RLCol)
SYMOLD ← GETSYM(x,y,GID,scale)
if SYM > SYMOLD then

SAVESYM(x,y,GID,scale,SYM)
end if

end for
end for

end for
end for

end procedure

threaded as intersecting rectangles.

6) Merging on the lowest scale Finally, the information

of the previously ignored lowest scale is used to expand

the final rectangles to their final dimensions.

The generated rectangles are drawn on the original picture in

white and the winner rectangle is drawn in orange. Different

Methods for deciding the winner rectangle have been tried.

The most consistent one was to pick the rectangle with the

highest number of merged rectangles. This version was used

in the present results of this work.

We did not find realistic cluttered scenes in the available

object databases. Therefore, we created our own, called RUB-
JECTS100 after our university’s acronym. The objects shown

in figure 4 have been photographed with a black background

and 72 views each.

The described algorithm has shown good results on several

severely cluttered scenes containing these objects. We present

one example complete with probability maps on all scales

in fig. 5. The system also showed good generalization in the

presence of noise and distortions. Many more examples can

be found in [6].

V. CONCLUSION

We have presented an object recognition method that learns

invariance under various imaging conditions from examples

and is capable of reasonable recognition in cluttered real

world scenes. Future work will include integrating this into a

neuronal system equipped with a robot arm to enable grasping

of desired objects [7].
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