-

Cortical topography of intracortical inhibition
influences the speed of decision making

Claudia Wilimzig?, Patrick Ragert®, and Hubert R. Dinse®"

2Division of Biology, California Institute of Technology, Pasadena, CA 91125; ®Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig,
Germany; and CInstitut fur Neuroinformatik, Neural Plasticity Lab, Ruhr-University Bochum, 44780 Bochum, Germany

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved January 10, 2012 (received for review August 30, 2011)

The neocortex contains orderly topographic maps; however, their
functional role remains controversial. Theoretical studies have
suggested a role in minimizing computational costs, whereas
empirical studies have focused on spatial localization. Using
a tactile multiple-choice reaction time (RT) task before and after
the induction of perceptual learning through repetitive sensory
stimulation, we extend the framework of cortical topographies by
demonstrating that the topographic arrangement of intracortical
inhibition contributes to the speed of human perceptual decision-
making processes. RTs differ among fingers, displaying an
inverted U-shaped function. Simulations using neural fields show
the inverted U-shaped RT distribution as an emergent conse-
quence of lateral inhibition. Weakening inhibition through learn-
ing shortens RTs, which is modeled through topographically
reorganized inhibition. Whereas changes in decision making are
often regarded as an outcome of higher cortical areas, our data
show that the spatial layout of interaction processes within
representational maps contributes to selection and decision-
making processes.

computational neuroscience | plasticity | cortical reorganization

he mammalian neocortex contains orderly topographic maps

of receptor surfaces that emerge early during ontogenetic
development (1, 2). However, the functional meaning and rele-
vance of the topographical arrangement are still debated (1-5).
There is agreement that topographic mapping is instrumental
in minimizing computational costs by keeping the length of
axonal and dendritic wiring low, thereby contributing to the
compactness of the neural circuitry (1, 6-8). On the other hand,
experimental studies have focused on the extent and size of
topographic maps, thereby exploring how and where physical
stimuli and their attributes are localized and represented in the
brain. Cortical lateral interaction seems to play a crucial role in
the integration of information from remote skin portions, which
is required for localization and discrimination (9-11), contour
integration, as well as contextual influences by surrounding ele-
ments (12, 13). Accordingly, cortical processing is modulated by
nonlinear interactions through range-dependent intracortical
excitation and inhibition. The mean-field approach has been
shown to provide an adequate and elegant way to model the
collective properties of large numbers of interacting neurons
(14-16).

Decision making has been discussed in the context of con-
tributions of frontal and prefrontal cortical areas (17-20). Our
study provides an extension of the framework of cortical top-
ographies by demonstrating through a combination of psycho-
physics, plasticity, and modeling that the speed of perceptual
decision making is modulated by the topographic layout of
intracortical interactions within early sensory cortical areas. We
used a tactile multiple-choice reaction time (RT) task that
requires selecting a given finger out of all 10 fingers on both
hands (Fig. 1) (21). RTs strongly differ among individual fingers,
displaying an inverted U-shaped function in which the RTs for
the middle fingers of each hand are significantly slower than
those of other fingers.
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To address the role of altered topographic maps in the speed
of perceptual decision making, we induced plastic changes to
the cortical hand representation by applying a so-called tactile
coactivation protocol (22-24). Coactivation is a form of re-
petitive sensory stimulation based on the induction of pre-
sumably Hebbian learning mechanisms (24-26). Coactivation
has been shown to expand cortical finger representation (27,
28) and to reduce intracortical inhibition, as indicated by re-
duced paired-pulse inhibition (29). Here we found that after
coactivating the middle finger, its RTs were significantly
shortened, resulting in the near disappearance of the inverted
U-shaped distribution.

To model the underlying processes at the neuronal population
level, we used neural fields with different groups of neurons
coding for different fingers embedded in a topographic repre-
sentation, which interact through a Mexican hat-type interaction
characterized by recurrent excitation and lateral inhibition (14,
15). Simulations show the inverted U-shaped distribution of RTs
as an emergent consequence of lateral inhibition within cortical
representational maps. By weakening the strength of inhibition,
our model accounts for cortical map expansion and behavioral
changes by replicating the shortening of RTs. Our model thereby
attributes both the emergence of the inverted U-shaped distri-
bution and its modification through learning to different levels of
topographically organized lateral inhibition. Although the role of
cortical topographies for spatial localization is straightforward,
these findings provide evidence that interaction processes within
cortical maps are crucial for selection processes and functions
related to decision making.

Results

Reaction Time Performance at Baseline. RTs differed for individual
fingers [repeated-measures (rm) ANOVA, post hoc Scheffé; P <
0.001; Fig. 24] under the 10-choice condition. RTs for the
middle fingers (d3) of each hand were significantly slower than
for the thumb (d1), index finger (d2), and little finger (dS5) (all
P < 0.001), but not d4 (P = 0.307). RTs were also slower, overall,
for the left than the right hand (P = 0.005).

Under dual-choice conditions (left d3 vs. right d5, or right d3
vs. left d5), RTs did not differ for d3 and d5 (rmANOVA, post
hoc Scheffé; P = 0.868 for left d5 vs. right d3, P = 0.336 for right
d3 vs. left d5; Fig. 2C). Overall, following Hick’s law (1952), RTs
of both d3 and d5 were faster under the dual-choice than the 10-
choice condition (P < 0.0001). Therefore, the observed slowing
of d3 under the 10-choice condition is specific to the process of
selecting from among all 10 fingers. We also used a five-choice
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Fig. 1. Experimental setup. Images of both hands were displayed on
a screen in front of the subjects, and on any given trial the finger to be
selected was marked (A). Responses were given via a hand-shaped 10-button
keyboard (B).

task, where five fingers of one hand were randomly selected and
subjects had to respond with the corresponding fingers. This
condition revealed a similar inverted U-shaped RT distribution
with short RTs for d1 and d5 and the longest RTs for d3.

Reaction Time Performance After Tactile Coactivation. Perception
and behavior are not only subject to improvement through
training but similarly through repetitive sensory stimulation.
Coactivation is a form of repetitive stimulation, which follows the
idea of Hebbian learning: Synchronous neural activity, necessary
to drive plastic changes, is evoked by tactile “co”-activation of
the skin. Several studies have shown that after a few hours of
coactivation, tactile discrimination abilities were improved (22,
23, 25, 27-29). To provide further evidence for the Hebbian
nature of coactivation, we used a modified version of the
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Fig. 2. Effects of coactivation on RTs: experimental findings. (A) Mean (+SE)
RTs for all fingers (digits 1-5) of the left (green) and right (blue) hand. RTs
differ among fingers, with d3 being slowest and d1 and d5 being fastest (P <
0.001). The left hand exhibits slower RTs than the right hand (P = 0.005). (B)
Mean (+SE) RTs of all fingers (digits 1-5) of the left and right hand before
(light blue) and after (magenta) coactivation. RTs on right d3 were signifi-
cantly faster after application of coactivaton (P < 0.001). (C) Comparison of
mean RTs (+SE) for right d3 (r3) and left d5 (I5) as well as left d3 (I3) and right
d5 (r5) in a dual-choice (2-C) and 10-choice task (10-C) before (light blue) and
after (magenta) coactivation. RTs did not differ for d3 and d5 under the
dual-choice condition, but slowed substantially under the 10-choice condi-
tion, particularly for d3. Speeding-up of RT after coactivation was restricted
to the right-hand, coactivated d3. (D) Mean (+SE) pre/post RT differences for
all fingers (digits 1-5) of the left and right hands. Although all fingers had
slightly faster RTs under the post condition, only right-hand d3 showed
a significant speeding up (0.002 < P < 0.032).
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coactivation protocol consisting of a single, small stimulation site
instead of one large area. This protocol lacking coactivation
evoked no effects, neither perceptually nor in cortical maps (28).
The lack of effects implies that spatial summation requirements
indicative of cooperative processes need to be fulfilled to drive
behavioral changes. Although it appears conceivable that coac-
tivation induces changes of synaptic transmission, the nature of
the underlying mechanisms so far remains unknown.

Coactivation applied for 3 h to right d3 had a major impact on
RTs (Fig. 2B). Again, differences between fingers were significant
both for the right (rmANOVA, post hoc Scheffé; P < 0.001) and
left hand (P < 0.001). Pre/post differences were significant
(rmANOVA) for the right (P < 0.001) and left hand (P < 0.001).
On the coactivated right hand, interaction between differences for
fingers and pre/post differences was significant (P = 0.011), in-
dicating a different gain, that is, a different amount of shortening
of RTsfor individual fingers. Such a differential shortening was not
observed for the noncoactivated, left hand, where RTs of in-
dividual fingers were reduced by about the same amount (Fig. 2D).

To scrutinize the specific influence of coactivation and to
separate it from the general influence of improvement by prac-
ticing the task, we compared the gains of individual fingers for
different conditions (Fig. 2D). Differences between fingers of the
noncoactivated left hand did not reach significance (rmANOVA,;
P = 0.776). In contrast, gains of individual fingers differed sig-
nificantly on the coactivated right hand (P < 0.001). Post hoc
Scheffé tests revealed that the gain of the coactivated d3 was
larger than the gain of all other fingers (0.002 < P < 0.032;
contrasts for all other fingers were not significant), indicating
that the amount of coactivation-induced learning was larger for
d3 than for all remaining fingers. These findings were further
substantiated by data from the control group (no coactivation),
which did not show differences in gain between fingers, although
a general but small improvement was observed on all fingers
(Fig. S1 and SI Methods).

The observation of shorter RTs of the left fingers after right
finger coactivation, and of the fingers of both hands after retesting
without coactivation (control group; SI Methods), can in principle
be due to practice or to coactivation itself. In the latter case,
coactivation must be assumed to exert contralateral effects.
However, the shortening of RTs for the left fingers after coac-
tivating right d3 was small compared with the effects seen on the
coactivated d3 (Fig. 2 C and D). A similar RT shortening was
observed in the control group that received no coactivation
(“sham” stimulation; Fig. S1). Moreover, in recent experiments on
changes in tactile acuity after coactivating fingers of the right,
dominant hand, measurable changes of acuity of the left, non-
stimulated hand had never been observed (22, 23, 25-29), which
argues for a substantial locality of coactivation-induced changes
and supports the view that after repeated testing, RT effects are
due to practice.

Moreover, the speeding up of RTs after coactivation was spe-
cific to the 10-choice condition (Fig. 2C). For dual-choice tasks,
when testing left d3 versus right d5, and right d3 versus left d5, we
found no significant differences (rmANOVA) between pre- and
postconditions (P = 0.251), and interactions between differences
for fingers and pre/post differences also did not reach significance
(P =0.905). Even more importantly, in the dual-choice task for the
coactivated right d3, no significant difference (rmANOVA) for
pre- versus postconditions (P = 0.391) and no significant in-
teraction between differences for fingers and pre/post differences
were found (P = 0.623) when right d3 was tested against left d5.

Model: Baseline Performance. We constructed a model in which
the fingers were represented in a topographical map. A number
of mathematical approaches to information processing in such
maps exist (14, 15). To model cortical representations of sepa-
rate fingers, we used a one-dimensional cut through the cortical
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surface such that the representations of different fingers were
aligned along this one-dimensional neural field, with different
sites of the neural field representing different fingers (Fig. 3 4
and B; for details, see SI Methods). The sizes of the cortical
representations in the model were chosen to be in accordance
with empirical data regarding the dimensions of cortical finger
representations (30). In accordance with empirical data from
human individuals, the representations of the fingers of the left
hand were made slightly smaller than those of the right hand
(31). Within the neural field, different neurons interact by dis-
tance-dependent interaction (15) with local excitation (equiva-
lent to recurrent self-excitation) and longer-range inhibition
(Mexican hat-type interaction) (schematically illustrated in Fig. 3
A and B). To model competition across all fingers of both hands,
inhibition decays for increasingly larger distances but never
approaches zero. The involvement of different neural field sites
coding for different neurons depends on two factors: their acti-
vation level, which is determined by the stimulus input (modeled
as Gaussian distributions of activation) (32), and the baseline
activity of these field sites (Fig. 3 4 and B). The baseline activity
was considered inhomogeneous such that different field sites
have different baseline activities, which may vary depending on
various factors such as task involvement (33, 34), the probability
of responses to be made (33), and memory traces of previous
responses (35). Effectively, the influence of these factors corre-
sponds to target input in spiking mean-field and network models
(36, 37), variation of the threshold (38-40) in sequential sam-
pling (41) and diffusion models (42, 43), or leaky competing
accumulator models (44) as the distance to threshold decreases.

In the 10-choice task, the baseline activity of the neurons coding
for all fingers was high (Fig. 3B), causing them to contribute
strongly to interaction. Because inhibition is distance-dependent,
a specific pattern occurs: d3 of each hand is within the strong
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Fig. 3. One-dimensional model of cortical finger representations. (A) We
model a one-dimensional cut through the cortical surface, with the repre-
sentations of the different fingers aligned along this one-dimensional neural
field. Activations develop continuously over time under the influence of
baseline activation [yellow indicates higher baseline activation than average
(blue)], stimulus inputs (higher activation after stimulus onset indicated by
red), and interactions within the field [Mexican-hat interaction, schematically
indicated by green (excitation) and red (inhibition) arrows]. In addition to the
distance-dependent inhibition depicted here, a weak global inhibition com-
ponent was used to provide completion across all fingers, so that only one
finger can answer at any given time. (B) Under the 10-choice condition
(Lower), all 10 fingers have high baseline levels of activation. D3 is within the
inhibitory range of d1, d2, d4, and d5 (red arrows; transparency indicates
strength of inhibition), whereas d1 (correspondingly d5) is only within in-
hibitory range of d2 and d3. Under the dual-choice condition (Upper), only d3
of one hand and d5 of the other hand have high baseline activation. (C)
Weakening of inhibition for right-hand d3 to account for the influence of
coactivation leads to higher levels of activation if d3 is selected, incorporating
the effect of coactivation on the enlargement of the cortical finger repre-
sentation (28).
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inhibitory range of both neighboring d2 and d4, yet to a lesser
extent inhibited by d1 and dS. In contrast, d1 and d5 are only
inhibited strongly by d2 and d4; they are inhibited more weakly by
d2 and d3 (Fig. 3B). The global inhibition that decays for in-
creasingly larger distances but never approaches zero ensures
competition across all fingers, so that only one finger can respond
at any given time.

RTs were modeled as time to threshold until activation of
neurons coding for specific fingers reached a predefined
threshold. Modeling RTs showed that inhibition within the
neural field produced an inverted U-shaped pattern, with d3 of
each hand being slowest and d1 and d5 being fastest, in accor-
dance with behavioral data (Fig. 4D). In addition, the slightly
smaller representation of the left hand made inhibition more
pronounced for decisions with the left than the right hand,
leading to longer RTs for left-hand reactions in general, again in
accordance with empirical data (Fig. 4D).

In contrast, only two fingers are strongly involved in task
processing in the dual-choice task. Therefore, in the model, the
baseline activity of only two fingers makes them strongly involved
in processing (Fig. 4C). Simulations of RTs not only dramatically
decreased RTs as a replication of Hick’s law but also made the
difference between left d3 versus right d5, or right d3 versus left
d5, disappear due to the lack of mutual inhibition, which is
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Fig. 4. Modeling RTs before and after coactivation. (A) Modeling RTs dem-
onstrates that inhibition within the neural field (Fig. 3 A and B) produces an
inverted U-shaped pattern, with d3 of each hand being slowest and d1 and d5
being fastest, both in accordance with behavioral data. The smaller repre-
sentation of the left hand (green) results in a stronger inhibition being more
pronounced for decisions with the left than the right hand (blue), lengthening
reaction times for the left hand. (B) Comparison of simulated RTs before (light
blue) and after (magenta) coactivation. Decreasing inhibition weakly for all
fingers (to account for general task learning) and strongly for right d3 (to
account for coactivation-induced effects) leads to an overall decrease in sim-
ulated RTs, with the difference strongest for right-hand d3. (C) Under dual-
choice conditions (2-C), simulated RTs did not differ for d3 and d5, but show
several-fold slowing under the 10-choice condition (10-C) (light blue bars).
Simulated RTs under the dual-choice condition also did not differ before (light
blue) and after (magenta) coactivation, whereas only right-hand d3 (r3)
exhibits substantial slowing after coactivation of this finger (blue vs. magenta
bars). Simulated reaction times for the same fingers under the 10-choice
condition are depicted for direct comparison. (D) Simulated pre/post RT dif-
ferences for all fingers of the left and right hands show the largest increase in
speeding for d3, aside from an unspecific but small acceleration for all fingers
due to task learning.
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operating in the 10-choice task (Fig. 4C). Our model therefore
attributes the occurrence of the inverted U-shaped RT patterns
to task-dependent lateral inhibition within cortical maps.

Modeling the Influence of Tactile Coactivation. Coactivation led to
a decrease of cortical inhibition (29), which has been assumed to
cause an expansion of the size of d3 representation (28). We
therefore implemented the observation about reduced inhibition
in the model by decreasing the involvement of inhibitory neurons
coding for the coactivated right d3 in inhibitory interaction. Such
a decrease in inhibition for d3 led to an increase in the maximum
level of activation elicited, if d3 is selected in the model (Fig. 3C),
which in turn leads to an increase in the size of cortical represen-
tation for d3. Modeling RTs showed that such a decrease in in-
hibition sped up RTs specifically for the coactivated right d3
(Fig. 4B).

Just as shown by the empirical data, speeding up of RT by
simulated coactivation (Fig. 4 B and D) was restricted to the 10-
choice condition, with no effects in the dual-choice task (Fig.
4C). Whereas for the 10-choice task all fingers contribute to the
interaction, resulting in a large mutual inhibition, in the dual-
choice task only two fingers contribute, resulting in a numerically
smaller inhibition. The impact of coactivation is modeled by
decreasing the involvement of inhibitory neurons coding for the
coactivated finger. Such a decrease in inhibition for the coac-
tivated finger led to an increase in the level of activation. Be-
cause under the dual-choice condition the two fingers compete
only mildly, the advantage arising from this coactivation effect
has no impact on RTs (Fig. 4 B-D). Combined with weakening
the strength of inhibition, we can model the influence of coac-
tivation-induced modification on RTs. These observations sup-
port the notion that inhibitory interaction within cortical maps
plays a crucial role in perceptual decision making.

As described for the empirical data above, we similarly eval-
uated the effect of simulated coactivation on the left, non-
coactivated hand (Fig. 4 B and D) and on a control group to
separate the effect of task practice, which resulted in a general,
but small, shortening of RTs (SI Methods). We modeled practice-
induced shortening of RTs with the same concept such that in-
hibition for all fingers decreased. Modeling RTs under these
conditions showed an overall but substantially smaller effect in
keeping with the empirical data (Fig. S1).

Discussion

Investigation of choice RTs is a convenient way to study decision-
making processes. We used a tactile multiple-choice RT task that
requires selecting a given finger out of all 10 fingers on both hands
(21). The fact that increasing the number of choices increases RT
was already discovered in the 19th century (45) and was formu-
lated into Hick’s law many decades ago (46). In fact, the multiple-
choice RTs we recorded were in the range of 500 ms, compared
with 200 ms for dual-choice RTs. Multiple-choice RTs differed
significantly across individual fingers, displaying an inverted U-
shaped function in which the RTs for the middle fingers of each
hand were slower by ~100 ms. Phenomenologically, the slow re-
sponse of the middle finger has been discussed in the context of
a so-called end effect, bow effect, or serial order effect, which are
often observed in cognitive tasks (47, 48). The substantial duration
of the RTs of the middle finger is not due to mechanical or mus-
cular constraints, as in a dual-choice task the RTs of the middle
finger and the little finger are comparably short (in the range of 250
ms). Moreover, we demonstrated that the end effect almost dis-
appears when a simple Hebbian learning protocol consisting of
repetitive stimulation of the middle finger is followed, resulting in
a significant speeding up of the RTs of the middle finger. Again,
this learning effect was limited to a multiple-choice condition.
To explain the long RTs of the middle finger under baseline
conditions as well as the selective speeding up following learning,

3110 | www.pnas.org/cgi/doi/10.1073/pnas.1114250109

we used neural fields to model subpopulations of neurons coding
for different fingers. Key components of the modeling approach
include number of choices (multichoice vs. dual-choice tasks) and
inhibition among these choices. Importantly, this inhibition is
characterized by a specific spatial structure that arises as a conse-
quence of the topographic mapping of the finger in cortical space.
Choices between neighboring fingers inhibit each other more
strongly than those between more distant fingers because their
cortical representations are closer to each other. Because lateral
inhibition is constrained by the cortical distance between fingers,
we observe a graded effect in which inhibitory effects are larger for
neighboring but weaker for more distant fingers. Therefore, in our
simulations, the inverted U-shaped RT distribution is the result of
lateral inhibition processes within the cortical map of the fingers.

RT models have been extensively studied on a behavioral level,
relying on accumulation of information over time, or on diffusion
processes by single counters or units with one unit representing one
choice (see reviews in refs. 39 and 40). Often, RT models are
neurally inspired by incorporating concepts such as mutual in-
hibition for two-choice (44, 49) and multichoice tasks (50). Our
approach, aswell as that in ref. 36 and recently in ref. 16, uses neural
fields in which single choices are explicitly represented by pop-
ulations of neurons. Recently, it was shown that models imple-
menting multineuron representations for each choice were able to
flexibly switch between different numbers of choice alternatives
without changes in network parameters or inputs, which supersedes
top-down regulation to deal with changes in the number of choices
(37). In such a network, its capacity to code for many choices is
positively correlated with the number of neurons representing in-
dividual choices, which adds to its physiological plausibility.

Our experiments included both dual-choice and multichoice
conditions. In the model, the neural field spans the representa-
tion of all 10 fingers. Whether one specific site (coding for one
particular finger) is involved in computational processing
depends on inputs added to the field. By choosing inputs cor-
responding to the current task situation (multi- vs. dual-choice),
the field can account for both behavioral tasks.

Inhibition among choices is an important component of many
models (36, 44) that accounts for the increase in RT with in-
creasing numbers of choices. Often, models incorporate in-
hibition without implementing a specific metric or spatial
structure. In this case, inhibition acts as a global component
where one response option inhibits all others (32, 44, 50). Other
models assign a metric to the interaction among choices char-
acterized by a given distance. Such a distance can correspond to
distance in feature space (36) or to distance in response space
(34), but does not explicitly connect to cortical space (i.e., the
closeness of representation in cortical coordinates).

Directly linking a feature or response space to cortical rep-
resentation might be advantageous when attempting to link
behavior to neurophysiological data. In this respect, our experi-
ments provide a unique design: The response space, which is
defined as the different response options spread across all fingers
of each hand, is directly linked to representational maps in the
somatosensory cortex (i.e., cortical space). Therefore, the re-
sponse options between fingers are mapped onto distance in
cortical coordinates. This relationship is based on the topo-
graphic mapping of the body surface onto cortical space, which
in the case of finger representations displays a remarkable order
(9, 10, 30, 31). A second crucial prerequisite comes from the
observation that interaction within the cortical map is spatially
structured, consistent with the Mexican-hat component used in
our model (10, 51). By using distance-dependent cortical in-
teraction, we explicitly connect behavioral space to correspond-
ing cortical map dimensions, which enables our model to account
for distance-specific effects of RT data, thereby extending the
potential functional role of cortical maps.
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Selecting a finger in a 10-choice RT task can be seen as a fairly
simple form of decision making. U-shaped effects on RTs are
well-established for visual stimuli, and even for higher-level
cognitive stimulus spaces (47, 52). It remains an interesting
question as to whether cognitive spaces may be mapped onto
coordinates of cortical representation comparable to our ap-
proach, which take advantage of the close relationship between
response space and cortical space: Using feature space instead of
response space opens the possibility of linking the end effect to
cortical topographies and thus the layout of lateral inhibition. An
even more challenging question is how the form of perceptual
decision making studied here might generalize to more sophis-
ticated forms as in neuroeconomics (53). It has recently been
suggested that embodied cognition might also play a role in
economics (54), which would open a way to link very abstract
levels of decision making to basic sensorimotor processing.

A second major component of our approach was to extend the
framework of decision making within cortical topographies to
learning processes. RTs can be sped up through perceptual
learning (55) but also through constraints arising from specific
behavioral traits such as action video game playing (56). The speed
of decision making in both our empirical and computational data
was influenced not only by distance and number of choices but also
by plastic changes of cortical maps. The speed of decision making
was substantially affected after coactivation of the middle finger,
as indicated by a significant decrease of RTs of the stimulated
middle finger under the multiple-choice condition.

Using neuroimaging and electrical source localization, coac-
tivation has been shown to lead to an increase in the size of the
cortical representation of the fingers used for coactivation. Linear
correlation analysis revealed significant relationships between
cortical map changes and the parallel improvement in two-point
discrimination abilities (23, 27, 28). A similar result was obtained
for changes in cortical excitability: After coactivation, paired-pulse
inhibition was reduced, and the amount of suppression was posi-
tively correlated with the individual gain in performance (29).
These findings have been taken as an argument that the neural
changes reflect changes in cortical processing causally related to
the processing of tactile information. Although effects of coac-
tivation on tactile perception are well-established (25), our results
here provide evidence for an influence of such learning protocols
on the speed of perceptual decision making.

There are many modeling approaches to account for re-
organization in adults, and there is agreement that the balance
between excitation and inhibition is a key factor. In a simulated
cortical network of lateral excitation and inhibition, the model
could reproduce experimentally observed receptive field expan-
sions following cortical lesion when parameters were set to an
inhibition-dominant scheme (57). In a recurrent network model
of excitatory and inhibitory units, strengthening inhibitory to
excitatory connections along with excitatory to excitatory con-
nections could capture reorganization of receptive fields after
amputation as well as sharpening of cortical responses, as ob-
served behaviorally after training (58).

In our model, lateral inhibition plays a central role, which was
motivated by experimental and theoretical observations. First,
recording neural responses in rat somatosensory cortex before
and after coactivation of the paws revealed no changes in

1. Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res
Bull 44(2):107-112.

2. Weinberg RJ (1997) Are topographic maps fundamental to sensory processing? Brain
Res Bull 44(2):113-116.

3. Diamond ME, Petersen RS, Harris JA (1999) Learning through maps: Functional sig-
nificance of topographic organization in primary sensory cortex. J Neurobiol 41(1):
64-68.

4. Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: Principles, projections,
and plasticity. Neuron 56:356-365.
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response amplitudes (59), which has been interpreted as a lack of
increased excitation. Data from human subjects have shown that
following coactivation, paired-pulse inhibition was reduced
whereas response amplitudes of the first response remained
unchanged (29). Such a pattern of changes is a signature of re-
duced intracortical inhibition with no or only minor impact on
thalamocortical transmission. Also, altered excitation is unlikely
to account for reduced paired-pulse inhibition, as GABAergic
mechanisms are involved in mediating paired-pulse inhibition.
Finally, to explain improvement of two-point discrimination in
parallel with impaired localization performance, both observed
experimentally after coactivation, we have used a mean-field
approach similar to that used here (60). Decreasing lateral in-
hibitory interaction resulted in bimodal activation for distances
that before coactivation evoked only single peaks, whereas for
localization, reduced inhibition permitted more fluctuation of
peak position, thus deteriorating localization (60).

In our model, the learning-reduced inhibition speeds up the
model’s RTs for the corresponding finger. Therefore, our com-
putational results imply an important role for interaction within
cortical maps for the speed of decision making, and also high-
light the importance of this interaction for transmitting plastic
changes in cortical maps and cortical topography into behavior.

Although topographic cortical maps have been recognized as
a ubiquitous organizational principle, their functional role is still
debated (1, 2). Our results suggest a crucial involvement of in-
teraction processes that are organized within the cortical to-
pography in the computation of the speed of perceptual decision
making. This implication extends beyond the functional roles
suggested so far, such as a facilitation of perception by sup-
pression of nearby distracters (61), or a facilitation mediating
a smooth perception of moving stimuli (8, 62, 63).

Methods

Subjects. Thirty-seven right-handed subjects with normal or corrected-to-
normal vision were tested. Coactivation was applied in 22 subjects (15 ad-
ditional subjects served as the control, repeating the task without coac-
tivation; SI Methods). The study was approved by the local Ethics Committee
of the Ruhr-University Bochum and was performed in accordance with the
Declaration of Helsinki; all subjects gave their written informed consent.

Reaction Time Measurements. \We measured multiple- and dual-choice RTs in
a finger selection visuo-tactile task adopted from ref. 21. An image of both
hands was displayed on a monitor and one finger was selected by a visual
marker. Subjects had to press the key corresponding to the selected finger
on a hand-shaped 10-button keyboard (Fig. 1 and S/ Methods).

Coactivation. Repetitive tactile stimulation was applied for 3 h to the tip of the
right middle finger (22, 23, 25, 27-28) (S| Methods).
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